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Abstract
Compressed sensing offers a way to perform 2D or 3D ultra-
sound imaging with a single ultrasound transducer. A coded
aperture in the form of a pseudo-random delay mask can en-
code lateral spatial information as temporal variations in the
recorded signal. A simplified model for the delay mask is pre-
sented in order to enable computationally-efficient simulation
of the system. Synthetic data, corresponding to a 2D scene with
three point targets, is generated according to a linear image for-
mation model. The inverse problem is then solved with a Least
Norm solution to achieve a faithful reconstruction of the scene
with a PSNR of 19.99 dB, under the conditions of four mask
rotations and an electronic SNR of 90 dB. The degradation of
PSNR of the reconstruction with decreasing electronic SNR is
also investigated.
Index Terms: single-element ultrasound, compressed sensing,
coded aperture, Field II

1. Introduction
Conventionally, a single ultrasound transducer can only mea-
sure time-of-flight echos that correspond to depth (z) informa-
tion, which is known as A-mode imaging (Fig. 1a). In order
to measure lateral (x, y) information which is needed for a 2D
or 3D imaging, mechanical scanning of a single transducer or
an ultrasound array with many elements is required in order to
adequately sample the spatial profile of the ultrasound field ac-
cording to the Nyquist-Shannon sampling theorem.

Compressed sensing allows for reconstruction of a signal
from sub-Nyquist sampled measurements by making use of the
signal’s sparsity in a transformed domain [1]. One such way
to enable compressed sensing by transforming a signal in the
context of single element ultrasound imaging is to introduce a
coded aperture in front of the transducer, which alters the phase
and/or amplitude of the transmitted and received wavefronts [2].
In particular, a pseudo-randomly coded delay mask in front of
a transducer will produce a highly aberrated and non-uniform
wave field which encodes spatial information from the scene as
temporal variations in the received signal. The received signal
can then be processed by an algorithm to yield a reconstructed
image (Fig. 1b).

The goal of this project is to develop and characterize
a computationally-efficient approach to simulating a single-
element, compressed sensing ultrasound imaging system by uti-
lizing a simplified model for the coded aperture delay mask.
Whereas Kruizinga et al. take an empirical approach by treat-
ing the coded aperture as a black box which must be measured
experimentally [2], this work instead uses a theoretical model
for the coded aperture which is as simple as possible. Although
this approach sacrifices some physical accuracy, it captures the
essential features of the system and elucidates its basic behavior
in a computationally-efficient manner.

Figure 1: Comparison of (a) A-mode imaging which can only
capture 1D information, and (b) 2D compressed sensing ultra-
sound imaging.

2. Related Work

Clinical ultrasound imaging systems typically use ultrasound
arrays with many individually-addressable elements, thus al-
lowing for 2D or 3D imaging by a beamforming process. These
systems are typically expensive due to the electronic hardware
complexity associated with a high channel count, they offer op-
timal image quality by satisfying the Nyquist sampling rate for
the spatial ultrasound field. Although the high quality images
produced by this approach are unlikely to be challenged by
compressed sensing techniques in clinical settings, compressed
sensing may provide tangible benefits in scenarios where hard-
ware complexity is at a premium, such as in space-constrained
or low-cost systems [2].

Other approaches to implementing a coded aperture in com-
pressed sensing ultrasound imaging include an amplitude mask
with Hadamard-encoding [3] or a scattering layer [4].



3. Methods
3.1. Near-Field Phase Screen Approximation

In this work, we consider a coded aperture in the form of a phase
or delay mask, made of a plastic material with a greater speed of
sound (cplastic = 2750 m/s) than the surrounding medium (ctissue

= 1540 m/s). The width of the transducer is divided into a set of
virtual elements. By varying the thickness of the mask in front
of each virtual element, a different phase shift or delay will be
applied to the wavefront incident at each virtual element. Ad-
ditionally, the wavefront may undergo partial reflection, refrac-
tion, and/or diffraction when crossing the interface between the
mask and the surrounding medium. To fully account for these
effects in simulation, a wave simulation in heterogeneous media
would be required.

In order to reduce the computation required, we make the
Near-Field Phase Screen approximation, which assumes that the
mask only causes a phase shift or delay on the wavefront, with
no amplitude changes or any other complicated wave phenom-
ena [5]. This approximation is reasonable when the mask is
near the transducer, there is not too much impedance mismatch
between the two materials, and there is not too much variation
in phase across each individual virtual element.

As a result of this approximation, the physical delay mask
can be modeled as a delay profile which is applied to the virtual
elements in the transducer. The simulation can then be per-
formed in a homogeneous medium. During pulse transmission,
a shifted version of the transducer’s impulse response is gen-
erated at each virtual element, which when combined together
form the transmitted wave. After this wave propagates through
the medium and scatters off of targets in the scene, the received
echo signals at each virtual element are shifted according to the
delay profile, and are then summed together to form a single
received signal (Fig. 2).

3.2. Mask Rotations

Rotating the delay mask allows unique spatial information to be
captured by additional measurements, thus allowing for better
image reconstruction, albeit with increased measurement time.
Note that this depends on the amount of correlation between
the rotated mask measurements [2]. For example, a delay mask
which has perfect rotational symmetry with respect to the axis
of rotation would see no benefit from making measurements
with additional rotations, because each set of rotated measure-
ments would be completely correlated. Furthermore, a small ro-
tation in a mask without rotational symmetry would likely have
a high degree of correlation. As another simplification in this
project, we consider independent, identically-distributed delay
profiles instead of a rotating a physical mask, thus ensuring min-
imal correlations between sets of rotated measurements.

3.3. Ultrasound Simulation

The pulse-echo response of the system was simulated using the
Field II library [6][7] in MATLAB software, release 2020b (The
MathWorks). The pulse-echo response is found by first comput-
ing the transmitted field by propagating a wave outward from
the transducer with the delay profile applied. Then by reci-
procity, the pulse-echo response at each pixel is given by the
temporal autoconvolution of the transmitted field at that pixel
[2]. Note that this approach is only valid for linear propaga-
tion and backscattering without any multipath reflections. If
these assumptions do not hold, such as in the cases of harmonic
imaging, imaging with non-linear contrast-enhancing agents, or

Figure 2: Diagram indicating how the delay mask is modeled
as a delay profile applied to virtual elements in the transducer
during pulse transmission (Tx) and receiving echoes (Rx).

imaging in a strongly reverberating medium, then computing
the pulse-echo response would require a separate, bi-directional
wave simulation for each point in the scene.

3.4. Linear Image Formation Model

Consider a 2D scene to be imaged with N pixels. Let v be
the vectorized ground truth image of the scene. Let u be the
measurement vector with M samples.

The linear image formation model is given by [2]:

u = Hv + n (1)

where:

• u is a M -dim column vector

• H is a block matrix with dimensions M ×N
• v is a N -dim column vector

• n is a M -dim column vector whose samples represent
zero-mean additive white Gaussian noise (AWGN) with
a noise variance of σ2

e . Note that electronic SNR is de-
fined here as eSNR = max(H)

σe
.

This linear image formation model is illustrated graphically in
Fig. 3a.

The structure of the block matrix H is as follows:

H =

H1

...
HR

 (2)



Figure 3: Diagram illustrating (a) the linear image formation
model and the structure of the H matrix, and (b) the pulse-echo
field (with colormap indicating energy integrated over time at
each pixel) for an example delay mask.

where:

• Hr =
[
hr,1 . . . hr,N

]
for r ∈ {1, . . . , R} is a K ×

N matrix

• hr,n is a K-dim column vector representing the pulse-
echo response as a time series at each pixel n ∈
{1 . . . N} in the image for mask rotation r.

Therefore, M = KR. Each column n of H can be thought
of as a set of vertically-stacked vectors corresponding to the
pulse-echo response at pixel n as measured with each mask ro-
tation r. The effect of increasing R is to acquire more measure-
ments which encode unique spatial information about the scene,
thus improving the degree to which the reconstruction problem
is ill or well-posed.

Synthetic data is generated directly from this image forma-
tion model in order to avoid issues with spatial and temporal
offsets that may arise in simulated or experimental measure-
ments.

3.5. Image Reconstruction

The image reconstruction problem requires inverting a possi-
bly underdetermined system, depending on how many mea-
surements M there are compared to the number of pixels N
in the image to reconstruct. If the system is underdetermined
(M < N ), there are infinitely many possible solutions v̂ sat-
isfying u = Hv̂ + n. In order to choose just one solution for
v̂, a criterion for the merit of a particular solution v̂ is needed.
An optimal solution for v̂ can then be found by maximizing the
merit function, or alternatively by minimizing the cost function.

The problem of finding this maximum or minimum can be for-
mulated as an optimization problem.

In this project, we consider two approaches to finding an
optimal solution. The first is Least Norm, which solves the
problem:

min
v̂
||Hv̂ − u||22 (3)

with the solution:

v̂ = HT (HHT )−1u (4)

The matrix inversion is computed by either the Preconditioned
Conjugate Gradients (PCG) method or with the Moore-Penrose
Pseudoinverse.

The second approach is to impose a prior assumption of
sparse gradients on the image and solve a constrained optimiza-
tion problem with the Alternating Direction Method of Multi-
pliers (ADMM) algorithm using a Total Variation (TV) regular-
ization term [8]. This approach solves the problem:

min
v̂

1

2
||Hv̂ − u||22 + λ||z||1 (5)

• λ is the regularization parameter

• z =

[
∇x
∇y

]
v̂ is the anisotropic gradient of the recon-

structed image

The ADMM method solves this problem with an iterative
approach, which is described by Boyd et al. [8].

4. Analysis
The need to take multiple measurements while rotating a mask
in order to achieve a well-conditioned inverse problem lim-
its the practicality of this approach. As such, this approach
does not appear to offer not much benefit over a mechanically-
scanned transducer for 2D imaging, except in the case of space-
constrained or cost-constrained applications. However, for 3D
imaging it can drastically cut down the amount of physical
movement required, since the compressed sensing mask only
needs to be rotated about a single axis, whereas the mechanical
scanning transducer would have to be rotated about or trans-
lated across two axes. The reduced motion required for acquir-
ing each image means that a series of images can be acquired
with a faster frame rate.

Another limitation of the compressed sensing approach to
ultrasound imaging is its dependence on sparsity in the im-
age. The more complex the scene is, the more measurements
and thus mask rotations are required to yield comparable image
quality to traditional methods of ultrasound imaging.

5. Results
A scene with dimensions of 31 × 50 pixels containing 3 point
targets was generated (Fig. 4a). The N = 2050 pixel image
was vectorized to yield the column-vector v.

The generated delay masks were pseudorandomly sampled
from a uniform distribution with a seed number supplied to the
random number generator in order to ensure repeatability. A
constant offset was added to the thickness of all elements, but
this has no effect on the results because only the relative de-
lays between elements matters. The mask thicknesses were then
converted into delay profiles according to the speed of sound in
the material.



Simulations were performed with no mask, a single rota-
tion (R = 1), and multiple rotations (R = 4). The case with
no mask can be considered as a special case of R = 1 with a
poorly-designed mask. The number of measurementsK in each
case varied slightly due to timing offsets in Field II. However,
in all cases K was approximately 480. Recall that M = KR
whereas N is held constant in all of the simulations performed,
so the conditioning of the inverse problem strongly depends on
the number of rotations R.

The reconstructed images were scaled to have pixel values
ranging from 0 to 1 before computing the Peak Signal-to-Noise
Ratio (PSNR) as:

PSNR = 10 log10

(
max(v)

MSE

)
(6)

where:

MSE =
1

N

N∑
n=1

(vn − v̂n)2 (7)

The effect of different mask configurations was investigated
with eSNR = 90dB (Fig. 4b). First, a measurement without
any delay mask is considered. Even without an intentionally-
designed coded aperture, the pulse-echo field has some spa-
tiotemporal diversity due to the near-field interference pattern
of an unfocused transducer, but there is still significant symme-
try and therefore correlation in the structure of the pulse echo
response. The resulting reconstructed image demonstrates some
ability to resolve the 3 point targets. However, there are substan-
tial serious artifacts present, such as double targets, fictitious
targets, and a high level of background noise.

Next, a measurement with a single rotation (R = 1) of the
delay mask is considered. The pulse-echo field is shown to have
much less symmetry and more spatial diversity than the case
with no mask. The resulting reconstructed image accurately
resolves the presence and location of the 3 point targets, without
introducing any fictitious targets. However, there is still a high
level of background noise, which degrades the image PSNR.

Finally, a measurement with multiple rotations (R = 4) of
the delay mask is considered. Each rotation introduces a unique
and diverse pulse-echo field. Therefore, it is unsurprising that
the reconstructed image looks much better than the no mask
and single rotation cases. The 3 point targets are clearly re-
solved with a low level of background noise, thus achieving a
high PSNR value. In fact, the pseudoinverse solution looks es-
sentially perfect.

The effect of electronic SNR on reconstruction quality was
also investigated (Fig. 4c). The PCG solution degrades gradu-
ally as the electronic SNR is decreased, whereas the pseudoin-
verse solution fails completely for any case that doesn’t have
extremely high electronic SNR.

ADMM results with eSNR = 90dB and various numbers
of mask rotations are shown in (Fig. 4b). The ADMM parame-
ters were 25 iterations, λ = 0.01, and ρ = 10. The results are
substantially worse than the Least Norm solutions, both quali-
tatively and quantitatively.

6. Discussion
Curiously, the reconstructions for a single rotation have a worse
PSNR than with no mask. This may be a consequence of the
scaling applied to the reconstructed images before computing
PSNR. If the reconstructed image has very high outliers in any
of its pixels, then the rest of the pixels will be scaled down

proportionately. Since the ground truth image is zero every-
where except for the 3 point targets, the presence of a high out-
lier would cause the background noise to be suppressed almost
everywhere after scaling, resulting in a lower MSE and higher
PSNR. Therefore, the comparison between the no mask and sin-
gle rotation cases may be unfair. It should be denoted that the
PSNR value is not a complete description of the quality of a re-
constructed image for this reason, as well as the fact that PSNR
doesn’t directly give any information about the presence of arti-
facts or dimensional accuracy of the reconstructed point targets.

Interestingly, the ADMM reconstruction yielded worse re-
sults than the Least Norm approach. This may be due to an
issue with the chosen parameters, or perhaps the prior term is
not well suited to the content of the image.

In future work, this work can be extended to reconstruct
3D scenes. Furthermore, an analysis of system resolution and
a characterization of the dependence of reconstruction quality
on image sparsity should be done. Additionally, there may be
more effective coded aperture designs than a pseudorandom de-
lay mask. This can be evaluated by measuring the correlation
between the columns of H in a given coded aperture design.
For practical implementations, the system should be modified to
work with real world experimental data or simulated data with
offsets and inaccuracies, rather than only the idealized, syn-
thetic data used in this work. Furthermore, the reconstruction
algorithm should be implemented with parallelization, so that it
may benefit with GPU acceleration. Another extension to the
system would be to implement a Kalman filter to dynamically
update the reconstructed image using knowledge from both the
previously reconstructed image and new measurements, thus
yielding improved results for dynamically changing scenes.

7. Conclusion
In conclusion, a compressed sensing method for 2D ultra-
sound imaging that uses a pseudorandom delay mask to encode
lateral spatial information as temporal variations with a sim-
plified, computationally-efficient simulation approach is pre-
sented. The treatment of the coded aperture delay mask as a de-
lay profile applied to the virtual elements in a transducer trades
off physical accuracy for computational simplicity. Additional
rotations of the mask, which are modeled here as independent
delay profiles, improve the conditioning of the inverse prob-
lem at the expense of increased measurement time. A scene
with 3 point targets was used to generate synthetic data, which
was then fed into Least Norm and ADMM reconstruction algo-
rithms. The quality of the reconstructed images are investigated
for a varying number of mask rotations R and electronic SNR.
Further work can be done to improve the physical accuracy and
performance of the simulation, as well as to enhance the overall
utility of the system.
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Figure 4: (a) Ground truth image with 3 point targets (b) Results with various mask configurations (c) Results with varying electronic
SNR.


