Automated Characterization of Single Photon Avalanche Diodes with Enhanced Near Infrared Sensitivity

William Meng¹, Kevin Renehan¹, Kenneth Shepard¹

BACKGROUND¹ Simplified Schematic¹ • How does a Single Photon Avalanche Diode (SPAD) work? Photoelectric effect 32 channels • Avalanche multiplication • Passive quenching² cathode relay • Why are SPADs useful? anode relay • Comparison to alternative photodetectors $\geq 100 \text{ k}\Omega$ Photomultiplier Tube (PMT) CMOS Photodiode $\overline{\nabla}$ • Charge Coupled Device (CCD) • Applications **DCR Experimental Setup** • Fluorescent Lifetime Imaging (FLIM) • Near Infrared Spectroscopy (NIRS) • Light Detection and Ranging (LIDAR) • Time of Flight imaging (ToF) • And much more! • What metrics determine how "good" a SPAD is? **PDP Experimental Setup** • Dark Count Rate (DCR) • Photon Detection Probability (PDP) • Jitter • Afterpulsing Probability (AP) Xenon Lamp • Fill Factor • What factors affect the outcome of these metrics? Geometry • Layer structure • Implant types • Shielding

OBJECTIVES

- How do you experimentally determine whether a SPAD design is suitable for a given application?
- How can you automate this experimental process for hundreds of devices?

Array of Various SPAD Designs on Custom Chip

¹Columbia University, New York, NY

Corresponding Author: William Meng (wlm2117@columbia.edu)

RESULTS SPAD Avalanche Waveform **Agilent Technologies** SAT JUL 06 03:53:56 2019 🔆 0.0s 200.0皆∕ Stop 🗜 🚺 731♥ Freq(4):No signal Ampl(4):No signal Freq(1): 2.26kHz Language € Getting Started Using Quick Help About Oscilloscope Dark Count Rate (DCR) TSMC SPADs (NIR.JAN.HALO.SPAD.6.2) measurement time = 10 seconds staring from EBV=0V

Photon Detection Probability (PDP)

CONCLUSION

- Measured DCR and PDP for over 100 SPAD designs
- Successfully identified suitable SPAD for usage in a next generation photonic neural interface
- Automation system can save time and effort for SPAD researchers
- Future Work
 - Utilize polymorphism to perform hardware agnostic experiments
 - Implement Active Quenching Circuit (AQC) to minimize dead time
 - Fix issue with comparator circuit to allow for wider range of excess bias voltage (EBV)
 - Characterize devices across a range of temperatures
 - Characterize intra and inter-wafer variations
 - Characterize Afterpulsing Probability (AP) and factor this into the PDP calculation³
 - Determine optimal excess bias voltage (EBV) to maximize Signal-to-Noise Ratio (SNR)⁴
 - Identify cause-and-effect relationships between device design parameters and resulting metrics

REFERENCES

[1] M. W. Fishburn, "Fundamentals of CMOS Single-Photon Avalanche Diodes," Delft University of Technology, Sep. 2012.

[2] V. Savuskan, M. Javitt, G. Visokolov, I. Brouk, Y. Nemirovsky, "Selecting Single Photon Avalanche Diode (SPAD) Passive-Quenching Resistance: An Approach," IEEE Sensors Journal, vol. 13, no. 6, Jun. 2013.

[3] M. A. Wayne, J. C. Bienfang, S. V. Polyakov, "Simple autocorrelation method for thoroughly characterizing single-photon detectors," Optics *Express*, vol. 25, no. 17, Aug. 2017.

[4] K. Kolb, "Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors," Optical Engineering, vol. 3, no. 8, Mar. 2014.

ACKNOWLEDGEMENTS

Supported by DARPA grant HR001118S0029 as part of the MOANA project. Chip was fabricated by TSMC. PCBs were fabricated by PCBWay and PCB Minions.

